Home
1 Introduction to Hitachi IGBT Modules
  1.1 New Generation of High-Power IGBT Modules
  1.2 Inherent Design Concepts
  1.3 Application Areas
2 Precautions for Safe Use
  2.1 Warning and Caution Symbols
  2.2 Notices
3 General Description of IGBT Modules
  3.1 Part Numbering
    Table 1. Numbering System Characteristics
  3.2 Internal Structure of Module
    Figure 1. Dual Pack Module
  3.3 Internal Structure of an IGBT Die
    Figure 2. Structure of IGBT die
  3.4 Symbol and Equivalent Circuit
    Figure 3. IGBT Symbol and Equivalent Circuit
  3.5 Operational Switching Description
4 Specification and Characteristics
  4.1 Contents of Specification
    4.1.1 Absolute Maximum Ratings
    4.1.2 Electrical Characteristics
    4.1.3 Outline Drawing for IGBT Modules
      Figure 4. Typical IGBT Module Outline Drawing
    4.1.4 Ratings and Characteristics
      Figure 5. IGBT Module Ratings and Characteristics
  4.2 Characteristic Curves
    4.2.1 Collector Current vs. Collector-Emitter Voltage
      Figure 6. Collector Current vs. Collector-Emitter Voltage
    4.2.2 Collector-Emitter Voltage vs. Gate-Emitter Voltage
      Figure 7. Collector-Emitter Voltage vs. Gate-Emitter Voltage
    4.2.3 Gate Charge Characteristics
      Figure 8. Gate Charge Characteristics
    4.2.4 Forward Voltage Characteristics of a Free-Wheeling Diode
      Figure 9. Forward Voltage Characteristics of a Free-Wheeling Diode
    4.2.5 Switching Time vs. Collector Current
      Figure 10. Switching Time vs. Collector Current
    4.2.6 Switching Time vs. Gate Resistance
      Figure 11. Switching Time vs. Gate Resistance
    4.2.7 Switching Loss vs. Collector Current
      Figure 12. Switching Loss vs. Collector Current
    4.2.8 Switching Loss vs. Gate Resistance
      Figure 13. Switching Loss vs. Gate Resistance
    4.2.9 Reverse-Biased Safe Operating Area
      Figure 14. Reverse-Biased Safe Operating Area
    4.2.10 Transient Thermal Impedance
      Figure 15. Transient Thermal Impedance Characteristics
  4.3 IGBT Terms, Symbols, and Definitions
    Table 2. IGBT Terms, Symbols, and Definitions
    4.3.1 Measurement of IGBT Switching Characteristics
      Figure 16. IGBT Switching Characteristics
    4.3.2 Measurement of FWD Reverse-Recovery Characteristics
      Figure 17. FWD Reverse-recovery Characteristics
5 Operating Parameters
  5.1 Derating Factors
    5.1.1 Voltage
      Equation 1: V CES = V in + V s + V reg +
    5.1.2 Current
      Equation 2: I p = P inv 5 ac / 5 5
    5.1.3 Temperature
  5.2 Snubber Circuit
    5.2.1 Features of Various Snubber Circuits
      5.2.1.1 Snubber Circuit between P and N
        Figure 18. Snubber Circuit between P and N
      5.2.1.2 Pair of Snubber Circuits between P and N
        Figure 19. Pair of Snubber Circuits between P and N
      5.2.1.3 Pair of Snubber Circuits between Arms
        Figure 20. Pair of Snubber Circuits between Arms
    5.2.2 Snubber Circuit Operation
      Figure 21. Turn-OFF Mode of bottom arm IGBT
      Figure 22. Equivalent Circuit (transient state)
    5.2.3 Snubber Circuit Current and Voltage Waveforms
      Figure 23. IGBT Module Current and Voltage Waveforms with Snubber Circuit
      Figure 24. Snubber Diode Current and Voltage Waveforms
        Equation 3: T S = 2 5 ()/ 4
        Equation 4: V = I C 5
        Equation 5: V f = L sn 5 di c / dt + V fr
        Equation 6: T n = 3 5 C s 5 R s
    5.2.4 Collector Current Class and Snubber Capacitor Values
      Equation 7: C = L st ( I / V )2
      Table 3. Snubber Capacitor Values
    5.2.5 Snubber Resistance Selection
      Equation 8: S n = 0.5 5 C S 5 (V)2
      Equation 9: P SN = (2/) 5 S n 5 f c
      Equation 10: R s > 2
    5.2.6 Snubber Diode Selection
  5.3 Gate Driving Considerations
    5.3.1 Gate Current and Gate Electric Charge
      Figure 25. Example of IGBT switching waveform
    5.3.2 Gate Electric Charge Characteristics
      Figure 26. Example of Gate Electric Charge Characteristics
    5.3.3 Gate Driving Loss Calculation
      Equation 11: P G =( V GP + V GN ) 5 Q GO 5 f c
      Figure 27. Driving Voltage and Gate Electric Charge
    5.3.4 IGBT Driving Voltage
  5.4 Parallel Circuitry Connections
    5.4.1 V ce (sat) Classify and Current Unbalanced Rate
      Table 4. Ranking of Collector-Emitter Saturation Voltages
        Equation 12: = { Ic /(I total / 2) - 1 } 5 100 (%)
    5.4.2 Parallel Connections and Current Derating
      Equation 13: R = {1+(n-1) 5 (1 - /100)/(1 + /100)}/n 5 100
    5.4.3 Parallel Connection Line Unbalancing Notes
      5.4.3.1 Number of Drivers per Arm
      5.4.3.2 Buffer Circuit for the Driver
        Figure 28. Driver Buffer Circuit (partial)
        Table 5. Recommended Transistors
      5.4.3.3 Connecting Gate Resistors in Parallel Circuits
        Equation 14: 2 R G > 2 (L gst )/(C ies / 2))1/2
        Figure 29. Parallel Connection between IGBT Modules and Driver Circuit
      5.4.3.4 Necessity for Symmetry of Main Circuit Wiring
        5.4.3.4.1 Wiring Equalization
          Figure 30. Wiring to equalize main wiring inductance values
          Figure 31. Equalization of Unbalanced Current
        5.4.3.4.2 Unbalanced Current Period caused by Wiring
          Equation 15: = 100 nH / ( 4.2 m 5 2) @ 12 s
        5.4.3.4.3 Wiring Example
          Figure 32. Example of Parallel Connection Wiring
  5.5 Calculation of Power Dissipation
    5.5.1 Power Losses Occurring in Dual-Pack IGBT Modules
      5.5.1.1 IGBT Power Dissipation
        5.5.1.1.1 Steady-state Power Dissipation
          Equation 16: P on = 1/2 v D dt; ( D: On-duty )
          Equation 17: D = (1 + sin )/2
          Equation 18: P on ={ I 0 / ( 2 )} 5 { a + ( /4 ) b 5 I 0 + ( /4) 5 cos 5 [ a +(8 b/(3 )) 5 I 0 ] }
          Figure 33. I C vs. V CE Characteristic
        5.5.1.1.2 Turn-ON Power Dissipation and Turn-OFF Power Dissipation
          Equation 19: I ave = (2/) 5 I 0
          Figure 34. Switching Loss vs. Collector Current
            Equation 20: P ton = E ton 5 f c /2
            Equation 21: P toff = E toff 5 f c /2
      5.5.1.2 Power Dissipation in a Free-Wheeling Diode
        5.5.1.2.1 Forward Power Dissipation
          Equation 22: P f = (1/2)I 0 sin 5 (a + b I 0 sin ) 5 [ (1- sin ( - )) / 2 ] d = { I 0 / ( 2 )} 5 ...
          Figure 35. Forward Voltage Characteristics of Free-Wheeling Diode
        5.5.1.2.2 Recovery Power Dissipation
          Equation 23: I ave = 5 I 0
          Equation 24: P rr = E rr 5 f c /2
  5.6 Thermal Impedance and Heat Dissipation Design
    5.6.1 Thermal Impedance
    5.6.2 Definition of Temperature Measurement Point
      Figure 36. Definition of Tc and Th Measurement Points
    5.6.3 Heat Dissipation Design
      5.6.3.1 Steady State
        Figure 37. Thermal Equivalent Circuit
          Equation 25: T j = P { R th (j- c) + R th (c-h) + R th (h-a))} + T a
          Equation 26: T j = P 5 ( R th (j-c)+ R th (c-h) + R th (h-a))
      5.6.3.2 Transient State
        Figure 38. Temperature ripple of Tj
          Equation 27: T jp = P 1 [ R th(st) 5 ( t 1 / t 2 ) + (1 - t1/t2) 5 R th (t l + t 2 )- R th ( t 2 ...
        Figure 39. Transient Thermal Impedance
        Figure 40. Transient Thermal Impedance Characteristics
  5.7 Dead Time
    5.7.1 Dead Time Logic in IGBT modules
      5.7.1.1 Typical Configuration
        Figure 41. Typical Configuration of a Major Circuit
      5.7.1.2 Comparing Dead Time and Real Dead Time
        Figure 42. Control Signal, Driver Voltage, and IGBT Collector Voltage Waveforms
          Equation 28: T D = T D - (t 3 + t 4 ) + (t l + t 2 )
    5.7.2 Calculating Delay Times of IGBTs
      5.7.2.1 Turn-ON and Turn-OFF Switching Waveforms
        Figure 43. Inductive Load Turn-ON and Turn-OFF Switching Waveforms
      5.7.2.2 Calculating Switching Delay Times
        Equation 29: I G res (on) = (V GP - V th (on))/(R c + Z on ))
        Equation 30: td(on) = -( R G + Z on ) 5 Cies [ln{( V GP - V th (on))/( V GP + V GN ) }]
        Equation 31: I Gres (off) = (V GP + V th (off))/( R G + Z off )
        Equation 32: t d (off)= -( R G + Z off ) 5 (C ies + C res (0)) 5 ln{(V GN + V th (off))/ (V GP + ...
        Figure 44. Parasitic Capacitance
    5.7.3 Parametric Effects on Switching Delay Time
      5.7.3.1 Examining Influential Parameters
        Equation 33: T D = T D - ( t 3 + t 4 ) + ( t 1 + t 2 )
        Equation 34: T D = T D + t 2 - t 4
        Equation 35: t d (on)=-(R G + Z on ) 5 C ies 5 ln{(V GP - V th (on))/(V GP + V GN )
        Equation 36: t d (off)= -(R G + Z off ) 5 3 Cies 5 ln{(V GN + V th (on))/(V GP + V GN )} + Q GC /...
        Equation 37: TD=TD [-{(R G + Z on ) 5 C ies 5 ln((V GP - Vth (on))/ (V GP + V GN )}] -[-{(R G + ...
        Equation 38: I G res (off)=( V GP + V th (off)) / (R G + Z off )
        Equation 39: T D = T D +[-{( R G + Z on ) 5 C ies 5 ln((V GP - V th (on))/(V GP + V GN )}] -[-{(...
      5.7.3.2 Effect on Gate Voltages
        Figure 45. Gate Voltage - Collector Current Characteristics
          Equation 40: v ge f 1 ( I C )
          Equation 41: v ge f 2 ( 1 / T J )
      5.7.3.3 Determinations of Gate Charge Values
        Figure 46. Gate Charge Q GC Values
      5.7.3.4 Example of Verification
        5.7.3.4.1 Verification Circuit Configuration
          Figure 47. Verification Circuit Configuration
        5.7.3.4.2 How to Observe Switching Waveforms
        5.7.3.4.3 How to Check Vertical Motion
          Figure 48. Control Signal and Gate Waveforms
          Figure 49. Top and Bottom Arm Waveforms
        5.7.3.4.4 Typical Verification
  5.8 Short Circuit Protection
    5.8.1 Short Circuit Pattern
    5.8.2 IGBT Operation during Short Circuit
    5.8.3 Short-circuit Current Cut-off
      5.8.3.1 Hard Cut-off
      5.8.3.2 Soft Cut-off
        Figure 50. Short-circuit Protection Waveforms
    5.8.4 Short-circuit Current and Gate Voltage Increase
      Figure 51. Example of Gate Charge Characteristics
      Figure 52. Dependency of Gate Voltage upon C res
        Equation 42: i gsc = (v ge (i) - V GP )/ R G
        Equation 43: Q res = i gsc 5 t scv
        Equation 44: v ge (i) = Q res 5 R G / t scv + V GP
    5.8.5 Prevention of Gate Voltage Increase
6 Handling
  6.1 Mounting IGBT modules to Heat Sinks
    6.1.1 Clamping Torque
      Table 6. Clamping Torque
    6.1.2 Thermal Compound Grease
      Equation 45: q = s 5 t 5 k
      Figure 53. Grease Positions
      Table 7. Recommended Grease and Specific Gravity
    6.1.3 Clamping Order of Screws
      Figure 54. Clamping Order for Two-point Clamping Module
      Figure 55. Clamping Order for Four-point Clamping Module
    6.1.4 Surface Roughness and Warp of Heat Sink
    6.1.5 Heat Sink Mounting Hole Diameter
      Figure 56. Example of Improper Heat Sink Mounting
      Table 8. Recommended Mounting Hole Diameter and Chamfering Value
  6.2 Main Terminal
    6.2.1 Pre-clamping and Final Clamping of Main Terminal
    6.2.2 Recommended Clamping Order of Mounting Screws
    6.2.3 Clamping Method for Mounting Screws
      Table 9. Recommended Clamping Torque for Terminals
    6.2.4 Recommended Screw Length
      Figure 57. Cross-sectional View of Screw Hole
      Table 10. Size for Screw Hole
  6.3 Mounting Precautions
    6.3.1 Fast-On Terminal
    6.3.2 Environmental
      6.3.2.1 Harmful Substances
      6.3.2.2 Exposure to Elements
  6.4 Storage and Shipping Considerations
    6.4.1 Recommended Storage Conditions
    6.4.2 Shipping Method
  6.5 Precautions against electrostatic failure
  6.6 IGBT Module Circuit Arrangement and Wiring Method
  6.7 Measurement Precautions
7 Reliability
  7.1 Module Failure Regions
    Figure 58. Module Failure Regions
  7.2 Failure Factors
    Table 11. Failure Mechanisms
  7.3 Quality Tests
    Table 12. Tests and Methods
    7.3.1 Examples of Possible Failure Mechanisms
      Figure 59. Possible Failure Mechanisms for an IGBT Module
    7.3.2 Acceptable Characteristics Limits after Quality Testing
    7.3.3 Sample Testing Criteria
    7.3.4 Frequency of Sample Testing
    7.3.5 Test results
      Table 13. Representative Example of Test Results
8 Troubleshooting
  8.1 Electrical Failure Analysis
    Figure 60. Electrical Failure Analysis
  8.2 Device Check Method
    Figure 61. Curve Tracer-based IGBT module Checking
9 Failure Precautions